Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Mol Ecol ; 33(2): e17202, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37947376

RESUMO

Insects are rich in various microorganisms, which play diverse roles in affecting host biology. Although most Drosophila species prefer rotten fruits, the agricultural pest Drosophila suzukii attacks ripening fruits before they are harvested. We have reported that the microbiota has positive and negative impacts on the agricultural pest D. suzukii on nutrient-poor and -rich diets, respectively. On nutrient-poor diets, microbes provide protein to facilitate larval development. But how they impede D. suzukii development on nutrient-rich diets is unknown. Here we report that Acetobacter pomorum (Apo), a commensal bacterium in many Drosophila species and rotting fruit, has several detrimental effects in D. suzukii. Feeding D. suzukii larvae nutrient-rich diets containing live Apo significantly delayed larval development and reduced the body weight of emerged adults. Apo induced larval immune responses and downregulated genes of digestion and juvenile hormone metabolism. Knockdown of these genes in germ-free larvae reproduced Apo-like weakened phenotypes. Apo was confirmed to secrete substantial amounts of gluconic acid. Adding gluconic acid to the D. suzukii larval diet hindered larval growth and decreased adult body weight. Moreover, the dose of gluconic acid that adversely affected D. suzukii did not negatively affect Drosophila melanogaster, suggesting that D. suzukii is less tolerant to acid than D. melanogaster. Taken together, these findings indicate that D. suzukii is negatively affected by gluconic acid, which may explain why it prefers ripening fruit over Apo-rich rotting fruit. These results show an insect's tolerance to microbes can influence its ecological niche.


Assuntos
Acetobacter , Gluconatos , Microbiota , Animais , Drosophila , Drosophila melanogaster/genética , Acetobacter/genética , Frutas , Larva/microbiologia , Peso Corporal
2.
J Bacteriol ; 205(11): e0010123, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37930061

RESUMO

IMPORTANCE: Acetobacter pasteurianus, an industrial vinegar-producing strain, is suffered by fermentation stress such as fermentation heat and/or high concentrations of acetic acid. By an experimental evolution approach, we have obtained a stress-tolerant strain, exhibiting significantly increased growth and acetic acid fermentation ability at higher temperatures. In this study, we report that only the three gene mutations of ones accumulated during the adaptation process, ansP, dctD, and glnD, were sufficient to reproduce the increased thermotolerance of A. pasteurianus. These mutations resulted in cell envelope modification, including increased phospholipid and lipopolysaccharide synthesis, increased respiratory activity, and cell size reduction. The phenotypic changes may cooperatively work to make the adapted cell thermotolerant by enhancing cell surface integrity, nutrient or oxygen availability, and energy generation.


Assuntos
Acetobacter , Termotolerância , Ácido Acético/metabolismo , Acetobacter/genética , Acetobacter/metabolismo , Fermentação , Aminoácidos/metabolismo
3.
PLoS One ; 18(10): e0292585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824485

RESUMO

Lactobacilli and Acetobacter sp. are commercially important bacteria that often form communities in natural fermentations, including food preparations, spoilage, and in the digestive tract of the fruit fly Drosophila melanogaster. Communities of these bacteria are widespread and prolific, despite numerous strain-specific auxotrophies, suggesting they have evolved nutrient interdependencies that regulate their growth. The use of a chemically-defined medium (CDM) supporting the growth of both groups of bacteria would facilitate the identification of the molecular mechanisms for the metabolic interactions between them. While numerous CDMs have been developed that support specific strains of lactobacilli or Acetobacter, there has not been a medium formulated to support both genera. We developed such a medium, based on a previous CDM designed for growth of lactobacilli, by modifying the nutrient abundances to improve growth yield. We further simplified the medium by substituting casamino acids in place of individual amino acids and the standard Wolfe's vitamins and mineral stocks in place of individual vitamins and minerals, resulting in a reduction from 40 to 8 stock solutions. These stock solutions can be used to prepare several CDM formulations that support robust growth of numerous lactobacilli and Acetobacters. Here, we provide the composition and several examples of its use, which is important for tractability in dissecting the genetic and metabolic basis of natural bacterial species interactions.


Assuntos
Acetobacter , Animais , Acetobacter/genética , Lactobacillus/fisiologia , Drosophila melanogaster , Bactérias , Vitaminas/metabolismo
4.
J Bacteriol ; 204(7): e0004122, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35695500

RESUMO

Acetobacter species are a major component of the gut microbiome of the fruit fly Drosophila melanogaster, a widely used model organism. While a range of studies have illuminated impacts of Acetobacter on their hosts, less is known about how association with the host impacts bacteria. A previous study identified that a purine salvage locus was commonly found in Acetobacter associated with Drosophila. In this study, we sought to verify the functions of predicted purine salvage genes in Acetobacter fabarum DsW_054 and to test the hypothesis that these bacteria can utilize host metabolites as a sole source of nitrogen. Targeted gene deletion and complementation experiments confirmed that genes encoding xanthine dehydrogenase (xdhB), urate hydroxylase (urhA), and allantoinase (puuE) were required for growth on their respective substrates as the sole source of nitrogen. Utilization of urate by Acetobacter is significant because this substrate is the major nitrogenous waste product of Drosophila, and its accumulation in the excretory system is detrimental to both flies and humans. The potential significance of our findings for host purine homeostasis and health are discussed, as are the implications for interactions among microbiota members, which differ in their capacity to utilize host metabolites for nitrogen. IMPORTANCEAcetobacter are commonly found in the gut microbiota of fruit flies, including Drosophila melanogaster. We evaluated the function of purine salvage genes in Acetobacter fabarum to test the hypothesis that this bacterium can utilize host metabolites as a source of nitrogen. Our results identify functions for three genes required for growth on urate, a major host waste product. The utilization of this and other Drosophila metabolites by gut bacteria may play a role in their survival in the host environment. Future research into how microbial metabolism impacts host purine homeostasis may lead to therapies because urate accumulation in the excretory system is detrimental to flies and humans.


Assuntos
Acetobacter , Acetobacter/genética , Animais , Bactérias , Drosophila melanogaster/microbiologia , Humanos , Nitrogênio/metabolismo , Ácido Úrico/metabolismo , Resíduos
5.
J Biotechnol ; 350: 24-30, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35390361

RESUMO

Acetobacter pasteurianus is an excellent cell factory for production of highly-strength acetic acid, and attracts an increasing attention in metabolic engineering. However, the available well-characterized constitutive and inducible promoters are rather limited to adjust metabolic fluxes in A. pasteurianus. In this study, we screened a panel of constitutive and acid stress-driven promoters based on time-series of RNA-seq data and characterized in A. pasteurianus and Escherichia coli. Nine constitutive promoters ranged in strength from 1.7-fold to 100-fold that of the well-known strong promoter Padh under non-acetic acid environment. Subsequently, an acetic acid-stable red fluorescent visual reporting system was established and applied to evaluate acid stress-driven promoter in A. pasteurianus during highly-acidic fermentation environment. PgroES was identified as acid stress-driven strong promoters, with expression outputs varied from 100% to 200% when acetic acid treatment. To assess their application potential, ultra-strong constitutive promoter Ptuf and acid stress-driven strong promoter PgroES were selected to overexpress acetyl-CoA synthase and greatly improved acetic acid tolerance. Notably, the acid stress-driven promoter displayed more favorable for regulating strain robustness against acid stress by overexpressing tolerance gene. In summary, this is the first well-characterized constitutive and acid stress-driven promoter library from A. pasteurianus, which could be used as a promising toolbox for metabolic engineering in acetic acid bacteria and other gram-negative bacteria.


Assuntos
Ácido Acético , Acetobacter , Ácido Acético/metabolismo , Acetobacter/genética , Acetobacter/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Engenharia Metabólica
6.
J Appl Microbiol ; 132(6): 4130-4149, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35182093

RESUMO

It has been more than a decade since Acetobacter senegalensis was isolated, identified and described as a thermotolerant strain of acetic acid bacteria. It was isolated from mango fruits in Senegal and used for industrial vinegar production in developing countries, mainly in sub-Saharan Africa. The strain was tested during several spirit vinegar fermentation processes at relatively high temperatures in accordance with African acclimation. The upstream fermentation process had significant stress factors, which are highlighted in this review so that the fermentation process can be better controlled. Due to its high industrial potential, this strain was extensively investigated by diverse industrial microbiologists worldwide; they concentrated on its microbiological, physiological and genomic features. A research group based in Belgium proposed an important project for the investigation of the whole-genome sequence of A. senegalensis. It would use a 454-pyrosequencing technique to determine and corroborate features that could give this strain significant diverse bio-industrial applications. For instance, its application in cocoa bean fermentation has made it a more suitable acetic acid bacterium for the making of chocolate than Acetobacter pasteurianus. Therefore, in this paper, we present a review that summarizes the current research on A. senegalensis at its microbial and genomic levels and also its specific bio-industrial applications, which can provide economic opportunities for African agribusiness. This review summarizes the physiological and genomic characteristics of Acetobacter senegalensis, a thermotolerant strain isolated from mango fruits and intended to be used in industrial vinegar fermentation processes. It also explores other bio-industrial applications such as cocoa fermentation. Vinegar fermentation is usually performed with mesophilic strains in temperate regions of the world. Developing countries, such as Senegal, import vinegar or make 'fake' vinegar by diluting acetic acid obtained from petrochemicals. The use of a thermotolerant Acetobacter senegalensis strain as a solid functional starter culture, as well as the design of a new adapted bioreactor, has significantly contributed to food security and the creation of small- to medium-sized enterprises that produce mango vinegar in West Africa.


Assuntos
Acetobacter , Cacau , Mangifera , Aclimatação , Ácido Acético , Acetobacter/genética , Cacau/microbiologia , Fermentação , Frutas/microbiologia
7.
J Biosci Bioeng ; 133(4): 375-381, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35125299

RESUMO

The constituents of fermentation foods vary seasonally and the microbiota plays a crucial role in metabolites formation. Here, the diversity and succession of microbiota of Shanxi mature vinegar produced with solid-solid fermentation craft have been investigated by Illumina Hiseq sequencing in both summer and winter. Obvious differences were observed in the structure of microbiota between summer and winter, and the bacterial community showed a significant difference (P < 0.05). Alpha diversity analysis showed that the diversity and richness of bacterial community were basically higher than that of fungal community in both summer and winter. For bacterial community, Lactobacillus and Limosilactobacillus were the two major group bacteria in the fermentation process of Shanxi mature vinegar in summer, and they dominated in acetic acid fermentation and alcoholic fermentation stages, respectively. Lactobacillus and Acetobacter were the two major group bacteria during the fermentation of Shanxi mature vinegar in winter. Saccharomyces, Saccharomycopsis, and Issatchenkia were the main yeasts in both seasons, while the dominant mould was Rhizopus in summer and Monascus in winter, respectively. The diversity of yeasts and moulds in winter was far greater than that in summer, especially in alcoholic fermentation stage. Collectively, our work revealed critical insights into effect of seasonal variation on the structure of microbiota of Shanxi mature vinegar, and was relevant in understanding the relationships between environmental change and microbiota.


Assuntos
Acetobacter , Microbiota , Ácido Acético/metabolismo , Acetobacter/genética , Acetobacter/metabolismo , Fermentação , Microbiota/genética , Estações do Ano
8.
Antonie Van Leeuwenhoek ; 115(1): 111-123, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34817761

RESUMO

Acetobacter senegalensis belongs to the group of acetic acid bacteria (AAB) that present potential biotechnological applications, for production of D-gluconate, cellulose and acetic acid. AAB can overcome heat and acid stresses by using strategies involving the overexpression of heat-shock proteins and enzymes from the complex pyrroquinoline-ADH, besides alcohol dehydrogenases (ADH). Nonetheless, the isolation of A. senegalensis and other AAB from food may be challenging due to presence of viable but non-culturable (VBNC) cells and due to uncertainties about nutritional requirements. To contribute for a better understanding of the ecology of AAB, this paper reports on the pangenome analysis of five strains of A. senegalensis recently isolated from a Brazilian spontaneous cocoa fermentation. The results showed biosynthetic clusters exclusively found in some cocoa-related AAB, such as those related to terpene pathways, which are important for flavour development. Genes related to oxidative stress were conserved in all the genomes, with multiple clusters. Moreover, there were genes coding for ADH and putative ABC transporters distributed in core, shell and cloud genomes, while chaperonin-encoding genes were present only in the core and soft-core genomes. Regarding quorum sensing, a response regulator gene was in the shell genome, and the gene encoding for acyl-homoserine lactone efflux protein was in the soft-core genome. There were quorum quenching-related genes, mainly encoding for lactonases, but also for acylases. Moreover, A. senegalensis did not have determinants of virulence or antibiotic resistance, which are good traits for strains intended to be applied in food fermentation.


Assuntos
Acetobacter , Cacau , Ácido Acético , Acetobacter/genética , Biotecnologia
9.
Prep Biochem Biotechnol ; 52(1): 38-47, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33904376

RESUMO

Vinegar is a common food additive produced by acetic acid bacteria (AAB) during fermentation process. Low yield and long incubation time in conventional vinegar fermentation processes has inspired research in developing efficient fermentation techniques by the activation of AAB for acetic acid production. The present study intends to enhance vinegar production using acetic acid bacteria and light emitting diode (LED). A total of eight acetic acid bacteria were isolated from Korean traditional vinegar and assessed for vinegar production. Isolate AP01 exhibited maximum vinegar production and was identified as Acetobacter pasteurianus based on the 16S rRNA sequences. The optimum fermentation conditions for the isolate AP01 was incubation under static condition at 30 °C for 10 days with 6% initial ethanol concentration. Fermentation under red LED light exhibited maximum vinegar production (3.6%) compared to green (3.5%), blue (3.2%), white (2.2%), and non-LED lights (3.0%). Vinegar produced using red LED showed less toxicity to mouse macrophage cell line (RAW 264.7) and high inhibitory effects on nitric oxide and IL-6 production. The results confirmed that red LED light could be used to increase the yield and decrease incubation time in vinegar fermentation process.


Assuntos
Ácido Acético/metabolismo , Acetobacter/metabolismo , Acetobacter/genética , Acetobacter/efeitos da radiação , Fermentação , Microbiologia Industrial , Luz , RNA Ribossômico 16S/genética
10.
Commun Biol ; 4(1): 1324, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819611

RESUMO

The gut microbiome produces vitamins, nutrients, and neurotransmitters, and helps to modulate the host immune system-and also plays a major role in the metabolism of many exogenous compounds, including drugs and chemical toxicants. However, the extent to which specific microbial species or communities modulate hazard upon exposure to chemicals remains largely opaque. Focusing on the effects of collateral dietary exposure to the widely used herbicide atrazine, we applied integrated omics and phenotypic screening to assess the role of the gut microbiome in modulating host resilience in Drosophila melanogaster. Transcriptional and metabolic responses to these compounds are sex-specific and depend strongly on the presence of the commensal microbiome. Sequencing the genomes of all abundant microbes in the fly gut revealed an enzymatic pathway responsible for atrazine detoxification unique to Acetobacter tropicalis. We find that Acetobacter tropicalis alone, in gnotobiotic animals, is sufficient to rescue increased atrazine toxicity to wild-type, conventionally reared levels. This work points toward the derivation of biotic strategies to improve host resilience to environmental chemical exposures, and illustrates the power of integrative omics to identify pathways responsible for adverse health outcomes.


Assuntos
Atrazina/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Inseticidas/toxicidade , Acetobacter/genética , Acetobacter/metabolismo , Animais , Drosophila melanogaster/microbiologia , Feminino , Inativação Metabólica , Masculino
11.
BMC Res Notes ; 14(1): 351, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496944

RESUMO

OBJECTIVES: As in most organisms, the surface of the fruit fly Drosophila melanogaster is associated with bacteria. To examine whether this association depends on cuticle quality, we isolated and quantified surface bacteria in normal and melanized flies applying a new and simple protocol. RESULTS: On wild flies maintained in the laboratory, we identified two persistently culturable species as Lactobacillus plantarum and Acetobacter pomorum by 16S rDNA sequencing. For quantification, we showered single flies for DNA extraction avoiding the rectum to prevent contamination from the gut. In quantitative PCR analyses, we determined the relative abundance of these two species in surface wash samples. On average, we found 17-times more A. pomorum than L. plantarum. To tentatively study the importance of the cuticle for the interaction of the surface with these bacteria, applying Crispr/Cas9 gene editing in the initial wild flies, we generated flies mutant for the ebony gene needed for cuticle melanisation and determined the L. plantarum to A. pomorum ratio on these flies. We found that the ratio between the two bacterial species reversed on ebony flies. We hypothesize that the cuticle chemistry is crucial for surface bacteria composition. This finding may inspire future studies on cuticle-microbiome interactions.


Assuntos
Acetobacter , Lactobacillus plantarum , Microbiota , Acetobacter/genética , Animais , Drosophila melanogaster , Lactobacillus plantarum/genética
12.
BMC Complement Med Ther ; 21(1): 183, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210310

RESUMO

BACKGROUND: In recent years, researchers are interested in the discovery of active compounds from traditional remedies and natural sources, as they reveal higher therapeutic efficacies and improved toxicological profiles. Among the various traditional treatments that have been widely studied and explored for their potential therapeutic benefits, kefir, a fermented beverage, demonstrates a broad spectrum of pharmacological properties, including antioxidant, anti-inflammation, and healing activities. These health-promoting properties of kefir vary among the kefir cultures found at the different part of the world as different media and culture conditions are used for kefir maintenance and fermentation. METHODS: This study investigated the microbial composition and readily found bioactive compounds in water kefir fermented in Malaysia using 16S rRNA microbiome and UHPLC sequencing approaches. The toxicity effects of the kefir water administration in BALB/c mice were analysed based on the mice survival, body weight index, biochemistry profile, and histopathological changes. The antioxidant activities were evaluated using SOD, FRAP, and NO assays. RESULTS: The 16S rRNA amplicon sequencing revealed the most abundant species found in the water kefir was Lactobacillus hilgardii followed by Lactobacillus harbinensis, Acetobacter lovaniensis, Lactobacillus satsumensis, Acetobacter tropicalis, Lactobacillus zeae, and Oenococcus oeni. The UHPLC screening showed flavonoid and phenolic acid derivatives as the most important bioactive compounds present in kefir water which has been responsible for its antioxidant activities. Subchronic toxicity study showed no toxicological signs, behavioural changes, or adverse effects by administrating 10 mL/kg/day and 2.5 mL/kg/day kefir water to the mice. Antioxidants assays demonstrated enhanced SOD and FRAP activities and reduced NO level, especially in the brain and kidney samples. CONCLUSIONS: This study will help to intensify the knowledge on the water kefir microbial composition, available phytochemicals and its toxicological and antioxidant effects on BALB/c mice since there are very limited studies on the water kefir grain fermented in Malaysia.


Assuntos
Kefir/microbiologia , Metagenoma , Microbiologia da Água , Acetobacter/genética , Animais , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Rim/metabolismo , Lactobacillus/genética , Fígado/metabolismo , Espectrometria de Massas , Camundongos Endogâmicos BALB C , Microbiota , Óxido Nítrico/metabolismo , Oenococcus/genética , RNA Ribossômico 16S , Baço/metabolismo , Superóxido Dismutase/metabolismo , Testes de Toxicidade Subcrônica
13.
Biosci Biotechnol Biochem ; 85(5): 1243-1251, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33686416

RESUMO

Thermotolerant microorganisms are useful for high-temperature fermentation. Several thermally adapted strains were previously obtained from Acetobacter pasteurianus in a nutrient-rich culture medium, while these adapted strains could not grow well at high temperature in the nutrient-poor practical culture medium, "rice moromi." In this study, A. pasteurianus K-1034 originally capable of performing acetic acid fermentation in rice moromi was thermally adapted by experimental evolution using a "pseudo" rice moromi culture. The adapted strains thus obtained were confirmed to grow well in such the nutrient-poor media in flask or jar-fermentor culture up to 40 or 39 °C; the mutation sites of the strains were also determined. The high-temperature fermentation ability was also shown to be comparable with a low-nutrient adapted strain previously obtained. Using the practical fermentation system, "Acetofermenter," acetic acid production was compared in the moromi culture; the results showed that the adapted strains efficiently perform practical vinegar production under high-temperature conditions.


Assuntos
Ácido Acético/metabolismo , Acetobacter/genética , Adaptação Fisiológica/genética , Etanol/metabolismo , Fermentação/genética , Termotolerância/genética , Acetobacter/metabolismo , Reatores Biológicos , Genoma Bacteriano , Temperatura Alta , Mutação , Oryza/química , Oxigênio/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo
14.
PLoS One ; 16(2): e0247376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606846

RESUMO

All metazoans are colonized by a complex and diverse set of microorganisms. The microbes colonize all parts of the body and are especially abundant in the gastrointestinal tract, where they constitute the gut microbiome. The fruit fly Drosophila melanogaster turned out to be an exquisite model organism to functionally test the importance of an intact gut microbiome. Still, however, fundamental questions remain unanswered. For example, it is unknown whether a fine-tuned regionalization of the gut microbiome exists and how such a spatial organization could be established. In order to pave the way for answering this question, we generated an optimized and adapted fluorescence in situ hybridization (FISH) protocol. We focused on the detection of the two major Drosophila gut microbiome constituting bacteria genera: Acetobacter and Lactobacillus. FISH allows to detect the bacteria in situ and thus to investigate their spatial localization in respect to the host as well as to other microbiome members. We demonstrate the applicability of the protocol using a diverse set of sample types.


Assuntos
Bactérias/genética , DNA Bacteriano/genética , Drosophila melanogaster/microbiologia , Hibridização in Situ Fluorescente/métodos , Acetobacter/genética , Acetobacter/isolamento & purificação , Animais , Bactérias/isolamento & purificação , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Masculino , Análise Espacial
15.
Appl Microbiol Biotechnol ; 105(2): 725-739, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33386897

RESUMO

Elucidation of the acetic acid resistance (AAR) mechanisms is of great significance to the development of industrial microbial species, specifically to the acetic acid bacteria (AAB) in vinegar industry. Currently, the role of population heterogeneity in the AAR of AAB is still unclear. In this study, we investigated the persister formation in AAB and the physiological role of HicAB in Acetobacter pasteurianus Ab3. We found that AAB were able to produce a high level of persister cells (10-2 to 100 in frequency) in the exponential-phase cultures. Initial addition of acetic acid and ethanol reduced the ratio of persister cells in A. pasteurianus by promoting the intracellular ATP level. Further, we demonstrated that HicAB was an important regulator of AAR in A. pasteurianus Ab3. Strains lacking hicAB showed a decreased survival under acetic acid exposure. Deletion of hicAB significantly diminished the acetic acid production, acetification rate, and persister formation in A. pasteurianus Ab3, underscoring the correlation between hicAB, persister formation, and acid stress resistance. By transcriptomic analysis (RNA-seq), we revealed that HicAB contributed to the survival of A. pasteurianus Ab3 under high acid stress by upregulating the expression of genes involved in the acetic acid over-oxidation and transport, 2-methylcitrate cycle, and oxidative phosphorylation. Collectively, the results of this study refresh our current understanding of the AAR mechanisms in A. pasteurianus, which may facilitate the development of novel ways for improving its industrial performance and direct the scaled-up vinegar production. KEY POINTS: • AAB strains form persister cells with different frequencies. • A. pasteurianus are able to form acid-tolerant persister cells. • HicAB contributes to the AAR and persister formation in A. pasteurianus Ab3.


Assuntos
Acetobacter , Antitoxinas , Ácido Acético , Acetobacter/genética , Fermentação
16.
Biotechnol Appl Biochem ; 68(3): 476-485, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32410247

RESUMO

Industrially, the sensitivity of acetic acid bacteria (AAB) to the high temperatures and the high ethanol concentrations is the major concerns for manufacturers. This study was conceived and designed to isolate and identify new thermo- and ethanol-tolerant AAB from Opuntia ficus-indica L. fruits. As a result, among 140 isolated bacterial strains, five selected strains (CR1, CR5, CR23, CZ2, and CZ15) exhibited important acetic acid production until 40 °C. The use of 16S rDNA gene analysis was insufficient to identify selected bacteria. Indeed, except CR5 that presented 100% similarity to A. cerevisiae, the other strains presented similar homology rates simultaneously to the 16S rDNA sequences of A. cerevisiae and A. malorum. The reidentification by 16S-23S rDNA gene sequencing showed that CR1, CR23, and CZ15 were A. malorum, which were shown tolerance to the highest concentration of ethanol (12%) and produced elevated amount (40 g/L) of acetic acid at 37 °C. In summary, we showed the thermotolerance and ethanol tolerant character of new A. malorum strains, which can be used as a starter for vinegar production. Furthermore, during the molecular characterization of the isolated strains, we concluded that 16S-23S rDNA internal transcribed spacer sequence is of great importance for discriminating between AAB species as a complement to the identification by 16S rDNA sequencing.


Assuntos
Acetobacter/isolamento & purificação , Etanol/química , Frutas/microbiologia , Opuntia/microbiologia , Temperatura , Acetobacter/genética , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética
17.
Microb Biotechnol ; 14(2): 643-655, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33174682

RESUMO

The very high concentrations required for industrial production of free acetic acid create toxicity and low pH values, which usually conflict with the host cell growth, leading to a poor productivity. Achieving a balance between cell fitness and product synthesis is the key challenge to improving acetic acid production efficiency in metabolic engineering. Here, we show that the synergistic regulation of alcohol/aldehyde dehydrogenase expression and cofactor PQQ level could not only efficiently relieve conflict between increased acetic acid production and compromised cell fitness, but also greatly enhance acetic acid tolerance of Acetobacter pasteurianus to a high initial concentration (3% v/v) of acetic acid. Combinatorial expression of adhA and pqqABCDE greatly shortens the duration of starting-up process from 116 to 99 h, leading to a yield of 69 g l-1 acetic acid in semi-continuous fermentation. As a final result, average acetic acid productivity has been raised to 0.99 g l-1  h-1 , which was 32% higher than the parental A. pasteurianus. This study is of great significance for decreasing cost of semi-continuous fermentation for producing high-strength acetic acid industrially. We envisioned that this strategy will be useful for production of many other desired organic acids, especially those involving cofactor reactions.


Assuntos
Ácido Acético , Acetobacter , Acetobacter/genética , Etanol , Fermentação
18.
Appl Microbiol Biotechnol ; 104(24): 10585-10599, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33156446

RESUMO

Acetic acid accumulation is a universal limiting factor to the vinegar manufacture because of the toxic effect of acetic acid on the acid producing strain, such as Acetobacter pasteurianus. In this study, we aimed to investigate the genome-wide transcriptional response of A. pasteurianus Ab3 to high acid stress during vinegar production. By comparing the transcriptional landscape of cells harvested from a long-term cultivation with high acidity (70 ± 3 g/L) to that of low acidity (10 ± 2 g/L), we demonstrated that 1005 genes were differentially expressed. By functional enrichment analysis, we found that the expression of genes related to the two-component systems (TCS) and toxin-antitoxin systems (TAS) was significantly regulated under high acid stress. Cells increased the genome stability to withstand the intracellular toxicity caused by the acetic acid accumulation by repressing the expression of transposases and integrases. Moreover, high acid stress induced the expression of genes involved in the pathways of peptidoglycan, ceramide, and phosphatidylcholine biosynthesis as well as the Tol-Pal and TonB-ExbB systems. In addition, we observed that cells increased and diversified the ATP production to resist high acid stress. Transcriptional upregulation in the pathways of pyrroloquinoline quinone (PQQ) synthesis and thiamine metabolism suggested that cells may increase the production of prosthetic groups to ensure the enzyme activity upon high acid stress. Collectively, the results of this study increase our current understanding of the acetic acid resistance (AAR) mechanisms in A. pasteurianus and provide opportunities for strain improvement and scaled-up vinegar production.Key Points• TCS and TAS are responsive to the acid stress and constitute the regulating networks.• Adaptive expression changes of cell envelope elements help cell resist acid stress.• Cells promote genome stability and diversify ATP production to withstand acid stress.


Assuntos
Ácido Acético , Acetobacter , Ácido Acético/toxicidade , Acetobacter/genética , Fermentação , Transcriptoma
19.
FEMS Microbiol Lett ; 367(19)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33021644

RESUMO

This study reports the development and optimization of a real-time loop-mediated isothermal amplification (qLAMP) method for rapid detection of Acetobacter aceti strain in red wine samples. Our results showed that the primers and probes designed for 16S rRNA were effective for A. aceti detection. The quantification limit of real-time polymerase chain reaction (qPCR) and qLAMP in pure culture was 2.05 × 101 colony forming units (CFU) mL-1. qLAMP had a sensitivity of 6.88 × 101 CFU mL-1 in artificially contaminated Changyu dry red wine (CDRW) and Changyu red wine (CRW), and 6.88 × 102 CFU mL-1 in artificially contaminated Greatwall dry red wine (GDRW), which was 10 times higher than that of qPCR. In conclusion, this newly developed qLAMP is a reliable, rapid and accurate method for the detection and quantification of A. aceti species in red wine samples. Furthermore, our work provides a standard reference method for the quantitative detection of A. aceti and other acetic acid bacteria during the fermentation and storage of red wine samples.


Assuntos
Acetobacter/genética , Microbiologia de Alimentos/métodos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Vinho/microbiologia , Limite de Detecção , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes
20.
Food Microbiol ; 92: 103597, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950138

RESUMO

Acetobacter pasteurianus 386B has been selected as a candidate functional starter culture to better control the cocoa fermentation process. Previously, its genome has been sequenced and a genome-scale metabolic model (GEM) has been reconstructed. To understand its metabolic adaptation to cocoa fermentation conditions, different flux balance analysis (FBA) simulations were performed and compared with experimental data. In particular, metabolic flux distributions were simulated for two phases that characterize the growth of A. pasteurianus 386B under cocoa fermentation conditions, predicting a switch in respiratory chain usage in between these phases. The possible influence on the resulting energy production was shown using a reduced version of the GEM. FBA simulations revealed the importance of the compartmentalization of the ethanol oxidation reactions, namely in the periplasm or in the cytoplasm, and highlighted the potential role of ethanol as a source of carbon, energy, and NADPH. Regarding the latter, the physiological function of a proton-translocating NAD(P)+ transhydrogenase was further investigated in silico. This study revealed the potential of using a GEM to simulate the metabolism of A. pasteurianus 386B, and may provide a general framework toward a better physiological understanding of functional starter cultures in food fermentation processes.


Assuntos
Acetobacter/fisiologia , Cacau/microbiologia , Genoma Bacteriano , Acetobacter/genética , Adaptação Fisiológica , Proteínas de Bactérias/genética , Etanol/metabolismo , Fermentação , Microbiologia de Alimentos , NADP/metabolismo , Sementes/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...